by Ahrens (1952), but is in fairly good agreement with the values in Table 5 derived from the ionic distances W-O known in the $\left[\mathrm{WO}_{4}\right]^{2-}$ ion of the structures $A \mathrm{WO}_{4}(A=\mathrm{Ba}, \mathrm{Ca}, \mathrm{Pb}$ or Sr$)$ given by Sillén \& Nylander (1943).

Table 5 shows also the change of the ionic distances in the tetrahedral coordination with the radii, or with the polarization effect of the $A$ cations. Also the $\mathrm{NH}_{4}^{+}$ion must have such an effect complicated to some extent by the protons around the N atom. The reduced ionic distance of $\mathrm{W}-\mathrm{O}$, as well as that of W-S can be attributed most probably to a partially covalent bond in the tetrahedron.

According to Fig. 4 and Table 4 the $\mathrm{NH}_{4}^{+}$ions have 9 and 10 nearest neighbours respectively, with distances ranging from $3 \cdot 10$ to $3 \cdot 96 \AA$. The arrangement of the $\mathrm{S}^{2-}$ ions around $\mathrm{NH}_{4}^{+}$is rather irregular.

Although the structure of ammonium thiotungstate cannot be regarded as a close-packed one, a similarity to close packing can be detected. Parallel to the plane (100) corrugated ionic planes can be seen (broken lines show these planes for one period in Fig. 4), built up of $\mathrm{S}^{2-}$ and $\mathrm{NH}_{4}^{+}$ions and appearing with two different ionic arrangements given without distortion in Fig. 5. These two kinds of ionic plane $A$ and $B$ alternate in the crystal lattice according to the scheme .. $A B B A B B A \ldots$ In Fig. 4 the period $B A B B$ is given. The fitting of any two neighbouring ionic planes is pictured in Fig. 6(a), (b), (c) in which the distortion of the lattice is omitted. As the ionic planes are built up of $\mathrm{S}^{2-}$ anions and $\mathrm{NH}_{4}^{+}$cations in one ( $a, b$ ) period of the unit cell, by fitting the $A B$ and $B A$ planes, only one tetrahedron and by fitting the $B B$ planes, two tetrahedra are built with only $\mathrm{S}^{2-}$ ions at the
corners. Every other polyhedron of this ionic arrangement has at its corners different kinds of ions. If we put $W$ atoms in the cavities surrounded only by $\mathrm{S}^{2-}$ ions and make a distortion by corrugating the related ionic planes which is necessary in order to separate from each other the atoms that are too near to one another in the undistorted arrangement, we come to the structure of ammonium thiotungstate.

The author would like to thank Dr G. Gattow of the University of Göttingen (Germany) for supplying the crystals used, the Hungarian Central Bureau of Statistics for supplying the computer Ural I, Mr G. Kiss for making the program for Ural 1, and Mr L. Zilahi-Sebess for his support in making the program for the computer IBM 628.

## References

Ahrens, L. H. (1952). Geochimica et Cosmochimica Acta, 2, 155.
Berzelius, J. J. (1826). Ann. Phys. Lpz. 8, 277.
Corleis, E. (1886). Liebigs Ann. 232, 268.
Gattow, G. (1959). Naturwissenschaften, 46, 425.
Gattow, G. (1962). Acta Cryst. 15, 419.
Goldschmidt, V. M. (1926). Geochemische Verteilungs. gesetze der Elemente, VII.
Internationale Tabellen zur Bestimmung von Kristallstrukturen (1935). Berlin: Borntraeger.
Sillén, L. G. \& Nylander, A. (1943). Ark. Kemi Min. Geol. A, 17, (4), 1.
Vater, H. (1883). Z. Kristallogr. 10, 392.
Wilson, A. J. C. (1942). Nature, Lond. 150, 152.
Wyckoff, R. W. G. \& Armstrong, Alice H. (1930). Z. Kristallogr. 72, 319.

# Order in Binary $\sigma$-Phases 

By C. G. Wilson<br>Royal Military College of Science, Shrivenham, Swindon, Wiltshire, England

(Received 3 August 1962 and in revised form 26 October 1962)
The atomic order in two $\sigma$-phase Re-Mo alloys has been determined using powder photographs and X-ray diffractometry. The proposed order schemes support the same correlation between the position of the element in the periodic table and the lattice site as that obeyed by $\sigma$-phases formed by elements of the first long period. Rhenium is similar to manganese in its ordering behaviour.

## Introduction

The existence of the $\sigma$-phase in many binary and ternary alloys of the transition elements has been reported in recent years (Greenfield \& Beck, 1956; Knapton, 1957; Nevitt \& Downey, 1957) and the detailed structure of this phase has been carefully
determined for several representative alloys (Bergman \& Shoemaker, 1954; Kasper, Decker \& Belanger, 1952; Dickins, Douglas \& Taylor, 1956). The existence of order in the $\sigma$-phase structure has been established in a number of alloys (Decker, Waterstrat \& Kasper, 1954; Kasper \& Waterstrat, 1956; Ageev \& Shekhtman, 1959, 1960; Brown \& Forsyth, 1961; Wilson \&

Spooner, 1963). The aim of these investigations is to obtain information about the factors governing the structure of this phase.

The present X-ray investigation was carried out in order to determine the nature of the order present in the $\sigma$-phase formed by rhenium and molybdenum
since there is a large difference in the atomic numbers of these two elements ( $Z_{\mathrm{Re}}-Z_{\mathrm{Mo}}=33$ ). The $\sigma$-phases were prepared by arc-melting in argon. The nominal compositions of the two alloys used were Re $55 \mathrm{at} . \%$, Mo $45 \mathrm{at} . \%$ (ReMo55) and Re $68 \mathrm{at} . \%$, Mo $32 \mathrm{at} . \%$ (ReMo68). According to Greenfield \& Beck (1956)

Table 1. X-ray data for $\sigma$-WRe 50

these $\sigma$-phases are stable above $1,200{ }^{\circ} \mathrm{C}$ and, accordingly, the melts were annealed at $2,000^{\circ} \mathrm{C}$ before quenching. The alloys were extremely brittle and powder samples were prepared by crushing and grinding with an agate mortar.

In addition to the two rhenium-molybdenum alloys a sample of a $\sigma$-phase containing $50 \mathrm{at} . \%$ tungsten and $50 \mathrm{at} . \%$ rhenium ( WRe 50 ) was also submitted to X-ray examination. Since the difference in scattering factors of tungsten and rhenium is very small and the anomalous dispersion corrections for copper radiation are the same (Dauben \& Templeton, 1955), this sample behaved as though it were disordered and thus served as a kind of standard for the detection of order in the rhenium-molybdenum alloys.

## Experimental

Debye-Scherrer powder photographs of all the alloys were taken with a 19 cm precision camera using a copper target with nickel filter. Unit-cell sizes were obtained from the observations on high-angle lines using a Nelson-Riley extrapolation method. Line intensities were estimated visually up to $\sin ^{2} \theta=0 \cdot 4$. Beyond this limit the interference between $\alpha_{1}$ and $\alpha_{2}$ components of neighbouring lines made the estimation of line intensities difficult. Line intensities were calculated for various ordering schemes and for a random atom distribution in the unit cell using the atomic co-ordinates of $\sigma \mathrm{Fe}-\mathrm{Cr}$ given by Bergman \& Shoemaker (1954). Other investigations (Decker et al., 1954; Kasper \& Waterstrat, 1956) have shown that these co-ordinates can be used with reasonable confidence with other $\sigma$-phases and their use should not introduce any serious error in intensity calculations for low $h k l$. The anomalous-dispersion corrections to scattering factors given by Dauben \& Templeton (1955) have been included in all the calculations. An absorption correction for each alloy has been determined using the method described by Klug \& Alexander (1954).

In order to obtain quantitative estimates of line intensities several runs were made with flat powder samples using a Hilger diffractometer with a stabilized Philips X-ray set and a curved quartz-crystal monochromator. Copper radiation was used with a xenonfilled proportional counter as detector connected to a single-channel pulse analyser set to received pulses from $K \alpha$ photons only. The diffraction pattern was recorded continuously at a chart speed of $3.75^{\circ}$ of $2 \theta$ per hour.

The line intensities of the diffractometer specimens were determined by measuring the areas beneath peaks using a planimeter. These were compared with calculations based on the Bergman-Shoemaker parameters. The absorption factor was assumed constant over the range of $2 \theta$ measured ( $10^{\circ}$ to $80^{\circ}$ approx.). Preferred-orientation effects, which were troublesome with the WRe sample, were minimized by mixing the
finely powdered sample with starch. The slight disagreement between observed and calculated intensities for 002 and 004 lines (Table 1) is attributed to this effect. The same procedure was adopted for the ReMo samples.

The diffractometer was set with an exit slit giving a horizontal divergence of $0.34^{\circ}$. With a time constant of five seconds and a thin sample of quartz powder which was used for calibration, the resolving power of the $20 \overline{2} 0$ line at $42^{\circ}$ (approx.) was $3 \%$. The use of Soller slits to improve the resolution was precluded because of the very small quantities of $\sigma$-phase samples available. Although reproducible results were obtained with the sample-starch mixtures, the intensities of medium and strong lines could not be estimated with an accuracy better than $10 \%$; the weakest lines, which were most important in $\sigma$-phase order determination, could not be measured to better than 30 to $40 \%$. The $\sigma$-phase is complex and the small intensity contributions from extremely weak lines, such as the unobserved lines of Table 1 , give rise to a virtual background which makes the delineation of the 'wings' of measured lines somewhat uncertain. This effect, coupled with the asymmetry of line profiles, led to large uncertainties in very weak line intensities. The uncertainties in single runs were reduced by taking mean values from several runs.

## Results

(i) $\sigma$-Phase WRe50

The unit-cell dimensions are

$$
\begin{gathered}
a=9 \cdot 6274 \pm 0 \cdot 0005, c=5 \cdot 0150 \pm 0 \cdot 0005 \AA \\
c / a=0.5209
\end{gathered}
$$

This result is in good agreement with Greenfield \& Beck (1956) who give $a=9.55, c=4.98 \AA, c / a=0.52$, for the WRe $\sigma$-phase. The values of $\sin ^{2} \theta$ and line intensities are given in Table 1. The good agreement between observed and calculated intensities, assuming a random distribution of atoms in the unit cell, gives some justification for using the Bergman \& Shoemaker parameters.

## (ii) $\sigma$-Phase ReMo55

The unit-cell dimensions are

$$
\begin{gathered}
a=9 \cdot 6010 \pm 0 \cdot 0005, c=4 \cdot 9850 \pm 0 \cdot 0005 \AA \\
c / a=0.5192
\end{gathered}
$$

Previous investigators of this $\sigma$-phase quote: $a=9.54-9.58, c=4.95-4.96 \AA, c / a=0.52$ (Greenfield \& Beck, 1956) ; $a=9.54, c=4.95 \AA, c / a=0.52$ for $\mathrm{Re}_{3} \mathrm{Mo}_{2}$ (Ageev \& Shekhtman, 1959); $a=9.588, c=4.983 \AA$, $c / a=0.520$ for $\mathrm{Re}_{3} \mathrm{Mo}_{2}$ (Knapton, 1958).

Visual comparison of the WRe50 and ReMo55 Debye-Scherrer films shows only minor differences in the intensities of the two characteristic groups of strong $\sigma$-phase lines and on this evidence alone the

ReMo55 phase might be regarded as completely disordered. A comparison of overexposed films shows the following differences which are attributed to ordering:

From the composition of the alloy it is assumed than an average of 16.5 atoms of rhenium and 13.5

Table 2. Comparison of selected weak lines on ReMo55 and WRe50 films

| hkl | $\sin ^{2} \theta$ | Remarks |
| :---: | :---: | :---: |
| 101 | 309 | Much stronger on ReMo55 than WRe50 |
| 111 | 374 | Seen on ReMo55 but not on WRe50 |
| 311 | 887 | Much weaker on ReMo55 than WRe50 |
| 322 | 1786 | is group of lines is relatively |
| 131 | 1843 1908 198 | stronger on ReMo55 than WRe50 |
| 402 | 1999 | Easily seen on ReMo55 film but not on WRe50 film |
|  | 2576 | his pair of lines is appre |
| 611 512 | 2638 | ReMo55 than WRe50 |

atoms of molybdenum are contained in the unit cell. The order scheme was determined by trial and error, guided by the requirements listed in Table 2. The relatively weak 002 line suggested that some Re atoms occupied $E$ sites which have a negative structure amplitude. In order that 331 might be strong the $D$ sites must be mainly occupied by Re atoms. Likewise, the observed intensity of 101 required

Table 3. Order scheme for ReMo55

| Crystallographic site |  |  | Total no. of atoms | Site Re | $\begin{aligned} & \text { ancy } \\ & \text { Mo } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| A | (000) |  | 2 | 2 | Nil |
| $B$ | ( $x x 0$ ) | ( $x=0.3981$ ) | 4 | 1 | 3 |
| C | ( $x y 0$ ) | $\begin{aligned} & (x=0.4632) \\ & (y=0.1316) \end{aligned}$ | 8 | 4 | 4 |
| D | ( $x y 0$ ) | $\begin{aligned} & (x=0.7376) \\ & (y=0.0653) \end{aligned}$ | 8 | 6.5 | 1.5 |
| $E$ | ( $x x z$ ) | $\begin{aligned} & (x=0.1823) \\ & (z=0.25) \end{aligned}$ | 8 | 3 | 5 |

Table 4. X-ray data for $\sigma$-ReMo 55

|  | Powder camera $\sin ^{2} \theta \times 10^{4}$ |  | Intensities: calculated |  |  | Diffractometer <br> Intensities: calculated |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $h k l$ | Obs. | Calc. | Observed | Ordered | Random | Observed | Ordered | Random |
| 110 | - | 129 | - | - | - | - | $<0 \cdot 1$ | $<0 \cdot 1$ |
| 200 |  | 258 | - | $0 \cdot 3$ | - | - | $0 \cdot 3$ | $<0 \cdot 1$ |
| 101 | 309 | 304 | vvw | $20 \cdot 3$ | $3 \cdot 2$ | 18 | $19 \cdot 2$ | $3 \cdot 0$ |
| 210 | - | 322 | - | $0 \cdot 6$ | - | - | 0.5 | $<0 \cdot 1$ |
| 111 | 374* | 368 | vvvw | $4 \cdot 1$ | $0 \cdot 6$ | $4 \cdot 6$ | $3 \cdot 4$ | 0.5 |
| 220 | - | 516 | - | $0 \cdot 9$ | - | - | 0.5 | $<0 \cdot 1$ |
| 211 | - | 561 | - | - | - | - | $<0 \cdot 1$ | 0 |
| 310 | - | 645 | - | $0 \cdot 6$ | 0.8 | - | $0 \cdot 3$ | $0 \cdot 4$ |
| 221 | - | 755 | - | $1 \cdot 3$ | $2 \cdot 8$ | - | 0.5 | $1 \cdot 1$ |
| 301 | - | 819 | - | - | 0.9 | - | $<0 \cdot 1$ | $0 \cdot 3$ |
| 320 | - | 838 | - | $1 \cdot 3$ | 0.5 | - | 0.5 | $0 \cdot 2$ |
| 311 | 887 | 884 | vvvw | $16 \cdot 1$ | $30 \cdot 1$ | $5 \cdot 8$ | $5 \cdot 4$ | $10 \cdot 1$ |
| 002 | 952 | 957 | $m w$ | 140 | 113 | 38 | $44 \cdot 3$ | 35.5 |
| 400 | - | 1032 |  | 1.3 | 0.4 | - | 0.4 | $0 \cdot 1$ |
| 321 | - | 1077 | - | 1.0 | 3.3 | - | $0 \cdot 3$ | 0.9 |
| 112 ) | 1093 | 1086 | vs | $\left.\begin{array}{r}13 \\ 520\end{array}\right\} 533$ | $\left.{ }_{519}^{15 \cdot 2}\right\} 534$ | 148 \} | $\left.{ }_{144}^{3 \cdot 6}\right\} 148$ | $\left.\begin{array}{c}4 \cdot 2 \\ 144\end{array}\right\} 148$ |
| 410 330 | 1157 | 1096 | $m s$ | $\left.\begin{array}{l}520 \\ 257\end{array}\right\}$ | 519 256 | 70 | 144 65.6 | 144 65.2 |
| 202 | 1211 | 1214 | $m$ | 218 | 227 | 57 | $55 \cdot 1$ | 57.4 |
| 212 |  | 1279 | $s$ |  |  | $112\}$ | 116 1.8 $\}$ (188 | $\left.{ }_{115}^{0.4}\right\}$ (115 |
| 420 \} | 1276 | 1289 | $s$ | $7 \cdot 6\}^{490}$ | $1.5\}^{479}$ | 12 \} | $1.8)^{18}$ | $0.4\}^{15}$ |
| 411 | 1332 | 1335 | vvs | 837 | 755 | 194 | 193 | 174 |
| 331 | 1397 | 1400 | $s$ | 415 | 376 | 98 | $92 \cdot 3$ | 83.7 |
| 222 | 1467 | 1472 | $m-m w$ | 97 | 91 | 23 | $20 \cdot 8$ | 19.6 |
| 421 | 1528* | 1528 | vvvw | $3 \cdot 1$ | $4 \cdot 0$ | - | $0 \cdot 6$ | 0.8 |
| 312 ) | 1596 | 1601 | $m$ | $134{ }^{2}$, $\} 136$ | 115 0.6 $\} 116$ | 27 | $\left.\begin{array}{r}27 \cdot 3 \\ 0.5\end{array}\right\} 27.8$ | $\left.\begin{array}{r}23.5 \\ 0.1\end{array}\right\} 23.6$ |
| 430 510 5 | 1680* | 1602 1676 | - | ${ }_{6 \cdot 3}^{2.3}{ }^{\text {c }}$ | 0.6 3.2 ${ }^{\text {a }}$ | - | 0.5 1.2 | $\begin{aligned} & 0 \cdot 15 \\ & 0 \cdot 6 \end{aligned}$ |
| 322 501 201 | 1786 | 1795 | $w$ | $49 \cdot 1$ $4 \cdot 5$ 50.7 | $28 \cdot 8$ $2 \cdot 1$ | 10.4 | $9 \cdot 2$ 0.8 0.3 | $5 \cdot 4$ 0.4 $5 \cdot$ |
| $\left.\begin{array}{l}501 \\ 431\end{array}\right\}$ | 1843 | 1851 | $w$ | $\left.\begin{array}{r}4 \cdot 5 \\ 50 \cdot 7\end{array}\right\} 55.2$ | $\left.\begin{array}{r}2 \cdot 1 \\ 31 \cdot 2\end{array}\right\} 33 \cdot 3$ | $10.6\}$ | $\left.\begin{array}{l}0.8 \\ 9.3\end{array}\right\} 10 \cdot 1$ | $\left.\begin{array}{l}0 \cdot 4 \\ 5 \cdot 7\end{array}\right\} \quad 6 \cdot 1$ |
| 520 | - | 1870 | - | 50 | 12 | - | $<0.1$ | $<0.1$ |
| 511 | 1908 | 1915 | $w$ | $49 \cdot 2$ | 31.5 | $9 \cdot 4$ | 8.8 | 5.7 |
| 402 | 1999* | 1988 | vvvw | 14.8 | $4 \cdot 2$ | $3 \cdot 9$ | 2.6 | $7 \cdot 4$ |
| 412 ) | 2062* | 2052 | vw | 12.7 ( ${ }^{\text {r }}$ (2.9 | $3 \cdot 2\} \quad 3 \cdot 4$ | 3.5 \} | $2 \cdot 1) \quad 2 \cdot 1$ | 0.5 0.1$\} 0.5$ |
| 440 | 2062 | 2063 |  | $0.2\}$ | 0.2 , 34 | , | $>0.1$, | $>0.1$ |
| $\left.\begin{array}{l}521 \\ 332\end{array}\right\}$ | 2101 | 2109 2117 | vow | $\left.\begin{array}{r}19.5 \\ 4.0\end{array}\right\} 23.5$ | $\left.\begin{array}{r}12.7 \\ 0.5\end{array}\right\} \quad 13.2$ | $4 \cdot 6\}$ | $\left.\begin{array}{l}3.1 \\ 0.7\end{array}\right\} \quad 3.8$ | $\left.\begin{array}{l}2.0 \\ 0.1\end{array}\right\} \quad 2.1$ |
| 332 530 | , | 2117 | - | 4.0 0.3 | 0.5 1.7 | , | <0.1 | 0.3 |
| 103 | 2222 | 2217 | vvvw | $8 \cdot 3$ | $1 \cdot 3$ | - | 1.3 | $0 \cdot 2$ |
| 422 | - | 2246 | - | $1 \cdot 2$ | $0 \cdot 7$ | - | $0 \cdot 2$ | $0 \cdot 1$ |


|  | Powder camera $\sin ^{2} \theta \times 10^{4}$ |  | Intensities: calculated |  |  | Diffractometer <br> Intensities: calculated |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| hkl | Obs. | Calc. | Observed | Ordered | Random | Observed | Ordered | Random |
| 113 | - | 2281 | - | 1.8 | $0 \cdot 3$ | - | $0 \cdot 3$ | $<0 \cdot 1$ |
| 441 | - | 2302 | - | 1.0 | $0 \cdot 1$ | - | $0 \cdot 2$ | $<0 \cdot 1$ |
| 600 | - | 2321 | - | - | $0 \cdot 3$ | - | 0 | $<0 \cdot 1$ |
| 610 | - | 2385 | - | 0.7 | - | - | $0 \cdot 1$ | $<0 \cdot 1$ |
| 531 | - | 2431 | - | - | - | - | $<0 \cdot 1$ | $<0 \cdot 1$ |
| 213 | - | 2494 | - | - | - | - | $<0 \cdot 1$ | $<0 \cdot 1$ |
| 432 ) | 2576* | 2568 | vovw | $23 \cdot 6$ - 24.2 | $39 \cdot 6{ }^{3} \times 5$ |  | $3 \cdot 3) \quad 3.4$ | $5.5\} \quad 6.0$ |
| 620 | 2576 | 2579 | vovw | 0.6 ¢ 24.2 | $3 \cdot 9$ ( 43.5 | $5 \cdot 4$ | $0 \cdot 1\} \quad 3.4$ | $0.5\} \quad 6.0$ |
| $\left.{ }_{512}^{611}\right\}$ | 2638* | 2624 |  | ${ }_{2 \cdot 1}^{1 \cdot 1}$ ( ${ }^{\text {c }}$ | 2.3) 45.5 |  | 0.1 ) 3.5 | 0.3 6.1 |
| $512\}$ | 2638* | 2633 | vovw | $25 \cdot 3\} 26.4$ | $43 \cdot 2\}^{45 \cdot 5}$ | $5 \cdot 2\}$ | $3 \cdot 4$ ¢ 3.5 | $5 \cdot 8\} \quad 6.1$ |
| 540 | - | 2643 | - | $0 \cdot 3$ | $3 \cdot 1$ | - | $<0 \cdot 1$ | $0 \cdot 4$ |
| 223 | - | 2668 | - | $0 \cdot 6$ | $2 \cdot 6$ | - | $0 \cdot 1$ | $0 \cdot 2$ |
| 303 | - | 2732 | - | - | $0 \cdot 4$ | - | $<0 \cdot 1$ | $<0 \cdot 1$ |
| 313 |  | 2797 |  | $7 \cdot 2$ | 13.9 |  | $0 \cdot 9$ | 1.8 |
| 621 | 2818 | 2818 | $v w$ | $12 \cdot 0\} 93 \cdot 3$ | 19.7 ¢ 106 | 8.0 | 1.5 11.7 | $2 \cdot 5$ 13.4 |
| 522 |  | 2826 |  | $74 \cdot 1$ | $72 \cdot 4$ |  | $9 \cdot 3$ | $9 \cdot 1$ |
| 541 | 2889* | 2878 |  | 6.6 6.7 7.3 |  | - | 0.8 ) 0.9 | 1.7) 1.7 |
| 630 \} | $288{ }^{*}$ | 2896 | vovw | 0.7 \} 7.3 | 13.8 \} | - | 0.1 ¢ 0.9 | $<0 \cdot 1\} \quad 1.7$ |
| 323 | - | 2985 | - | - | - | - | $<0 \cdot 1$ | $0 \cdot 1$ |
| 442 | - | 3015 | - | - | -- | - | $0 \cdot 1$ | $0 \cdot 1$ |


| $\left.\begin{array}{l} 631 \\ 532 \end{array}\right\}$ | 3140 | $\begin{aligned} & 3135 \\ & 3143 \end{aligned}$ | $m-m s$ | $\left.{ }_{283}^{7.9}\right\} 291$ | $\underset{298}{11 \cdot 1}\} 310$ | $30 \cdot 1\}$ | 0.9 32.1 | 33 | $\left.\begin{array}{r}1.3 \\ 33.8\end{array}\right\}$ | $35 \cdot 1$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 550 |  |  |  | 112 , |  |  |  |  |  |  |
| 710 \} | 3214 | 3218 | $w-m w$ | $\left.{ }_{214}\right\}^{114}$ | $\left.{ }_{0.2}\right\}^{116} 116$ |  | 0.3 12.5 |  | $\begin{array}{r}0.1 \\ 12.8 \\ \hline\end{array}$ |  |
| 413 | 3242 | 3243 | $m s-s$ | 417 | 377 |  | 47 |  | $42 \cdot 4$ |  |
| 602 | 3268 | 3272 | $m$ | 154 | 162 | 124 | 17 | 115 | 17.9 | 109 |
| 333 | 3303 | 3307 | $m$ | 218 | 198 |  | 23.7 |  | 21.5 |  |
| 612 ) | 3332 | 3336 |  | 137 ) 137 | 134 ) 135 |  | 14.5 |  | 14.2 |  |
| 640 ) | 3332 | 3347 | $m$ | $0.4\}^{137}$ | $0.8\}^{135}$ |  | $<0 \cdot 1$ ) |  | $<0.1$ ) |  |
| $\left.\begin{array}{l}701 \\ 720\end{array}\right\}$ | 3407 | 3393 |  | 25 25 - ${ }^{25}$ | $\left.{ }_{24}^{24}\right\} 320$ |  | $2 \cdot 5$ |  | $2 \cdot 4$ |  |
| 720 ) | 3407 | 3411 | $m s$ | $278\}^{303}$ | 296 \} 320 |  | 28.4 |  | $30 \cdot 3$ |  |
| 423 | - | 3436 | - | $5 \cdot 5$ | 3.6 | $45 \cdot 5$ | $0 \cdot 6$ | $50 \cdot 8$ | $0 \cdot 4$ | $49 \cdot 5$ |
| $\left.\begin{array}{l}711 \\ 551\end{array}\right\}$ | 3453 | 3457 | $m$ | $\left.{ }_{189}^{1 \cdot 1}\right\} 190$ | ${ }_{162}^{0.3}$ ( ${ }^{\text {a }}$ |  | 0.1 19.2 |  | $<0.1$ |  |
| 622 | 3527 | 3529 | $w$ | 189 | $\left.\begin{array}{r}162 \\ 95\end{array}\right\}$ | 11.8 | 19.2 10.7 |  | 16.4 9.5 |  |
| ${ }_{541}^{641}$ \} | 3590 | 3586 |  |  |  |  | $2 \cdot 8$ |  | $2 \cdot 3$ \} |  |
| 542 ) | 3590 | 3594 | $w$ | $101\}^{129}$ | 88 \} 111 | $12.5\}$ | $9.9\}$ | 12.7 | 8.7 \} | 11.0 |
| 721 | 3646 | 3650 | $m s$ | 292 | 230 | $26 \cdot 3$ | 28.6 |  | $22 \cdot 5$ |  |
| 730 | - | 3733 | - | 0.8 | $0 \cdot 2$ | - | $0 \cdot 1$ |  | $0 \cdot 1$ |  |
| 503 ) |  |  |  | 2 ) 27.6 | $0.7{ }^{0} 20$ | - | $0 \cdot 2$ |  | $0 \cdot 1$ ) |  |
| 433 \} | 3777* | 3764 | vvow | $25 \cdot 6\} 27.6$ | $19.3\} 20$ |  | $2 \cdot 4\}$ | $2 \cdot 6$ | 1.8 \% | 1.9 |
| 004 | 3819 | 3820 | $m$ | 222 2-5 256 | 213 235 | 16.9 | 20-1 | $23 \cdot 1$ | 19.2 ) | $21 \cdot 1$ |
| 513 ) |  |  | m | $33.5{ }^{256}$ | $22{ }^{235}$ | 16.9 | 3.0 \} | $23 \cdot 1$ | $1.9\}$ | $21 \cdot 1$ |

N.B. Values of $\sin ^{2} \theta$ below dotted line refer to $\alpha_{1}$ components. $\quad v=$ very; $\quad w=$ weak; $m=$ medium; $s=$ strong.

* Indicates measurement made on overexposed film.
$B$ sites to be filled mainly by molybdenum atoms and $A$ sites filled by Re atoms. The refinement of an order scheme which satisfied the powder film data was obtained from a study of diffractometer intensities. The reliability of the final order scheme, which is given in Table 3, is such that a replacement of one atom of Re by Mo has an observable adverse effect. The calculated intensities for this scheme, normalized to the diffractometer intensities, and also for a random arrangement are given in Table 4; the powder film data are also given in this table.


## (iii) $\sigma$-Phase ReMo68

The unit-cell dimensions are

$$
\begin{gathered}
a=9.5788 \pm 0.0004, c=4.9741 \pm 0.0005 \AA \\
c / a=0.5193
\end{gathered}
$$

This cell is slightly smaller than that of ReMo55, which supports the belief that $R e$ atoms tend to occupy sites of smaller volume than those of Mo atoms.

Table 5. Order schemes for ReMo68

|  |  | Order scheme |  | Order scheme |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Notal no. |  |  |  |  |  |$\quad$| No.l |
| :---: |

Table 6. X-ray data for $\sigma$-ReMo 68

|  | $\begin{gathered} \text { Powder } \\ \text { camera } \\ \sin ^{2} \theta \times 10^{4} \\ \hline \end{gathered}$ |  | Intensities: calculated |  |  |  |  |  | Diffractometer <br> Intensities: calculated |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $h k l$ | Obs. | Calc. | Obs. | Ord. 1 |  | Ord. 2 |  | Random | Obs. | Ord. I | Ord. 2 | Random |
| 101 | 307 | 308 | vow | $19 \cdot 1$ |  | 26.3 |  | $3 \cdot 4$ | $18 \cdot 6$ | 18.1 | 24.9 | $3 \cdot 2$ |
| 111 |  | 373 | <vvw | $5 \cdot 5$ |  | $7 \cdot 1$ |  | $0 \cdot 6$ | $4 \cdot 3$ | $4 \cdot 6$ | $5 \cdot 9$ | 0.5 |
| 311 | 896 | 895 | < vvw | 17.5 |  | $12 \cdot 9$ |  | $32 \cdot 3$ | 6.8 | $5 \cdot 9$ | $4 \cdot 3$ | $10 \cdot 8$ |
| 002 | 965 | 968 | $w$ | 158 |  | 139 |  | 121 | 41.9 | 50 | $43 \cdot 8$ | $38 \cdot 1$ |
| $\left.\begin{array}{l}112 \\ 410\end{array}\right\}$ | 1107 | 1096 1109 | $s$ |  |  |  |  | 572 |  |  |  |  |
| 410 330 | 1172 | 1109 1174 | $m$ | $597 \cdot 6$ 278 |  | $\left.\begin{array}{l}620 \\ 293\end{array}\right\}$ | 636 | 572 274 | $\left.\begin{array}{c}169 \\ 81\end{array}\right\}$ | $\left.{ }_{70 \cdot 9}^{165}\right\}^{169}$ | \} $\begin{array}{r}176 \\ 75\end{array}$ | \} $\begin{array}{r}157 \\ 70\end{array}$ |
| 202 | 1225 | 1226 | $m w$ | 249 |  | 244 |  | 243 | 59.9 | $62 \cdot 7$ | 62 | 61.5 |
| $\left.\begin{array}{l}212 \\ 420\end{array}\right\}$ | 1289 | 1291 | $m s$ | $\left.\begin{array}{r}536 \\ 10\end{array}\right\}$ |  | 542 | 553 | 513 | 128 \} | 129.2 $\left.{ }_{2 \cdot 2}\right\} 131$ | \} 134 | \} 124 |
| 411 | 1348 | 1349 | $v s$ | 922 |  | 881 |  | 809 | 209 | 213 | 203 | 187 |
| 331 | 1413 | 1414 | $m s$ | 484 |  | 458 |  | 403 | 103 | 108 | 102 | 90 |
| 222 | 1483 | 1485 | $v w$ | 117 |  | 126 |  | 98 | 26.5 | 25 | 26.9 | 21 |
| 421 | 1543 | 1544 | $<v v w$ | $3 \cdot 9$ |  | 7-1 |  | $4 \cdot 3$ | not obs. | 0.8 | 1.5 | 0.9 |
| $\left.\begin{array}{l}312 \\ 430\end{array}\right\}$ | 1614 | 1614 1629 | $w$ | $\left.\begin{array}{r}146 \\ 3\end{array}\right\}$ |  | $\left.\begin{array}{r}150 \\ 5\end{array}\right\}$ |  | 124 |  | 29.7 $\left.{ }^{2 \cdot 6 \cdot 6}\right\} 30 \cdot 3$ | 31.6 |  |
| 430 ) | 1807 | 1629 | $w$ | 3 3 |  | 5 5 |  | 124 30.9 | 29.4 \} | $0 \cdot 6\}^{30.3}$ | 31.6 | $25 \cdot 3$ |
| 322 | 1807 | 1809 | $v w$ | 48.5 |  | $64 \cdot 3$ |  | $30 \cdot 9$ | 10.7 | $9 \cdot 1$ | $12 \cdot 1$ | $5 \cdot 8$ |
| $\left.\begin{array}{l}501 \\ 431\end{array}\right\}$ | 1865 | 1869 | $v w$ | $\left.\begin{array}{r}4 \cdot 1 \\ 44 \cdot 3\end{array}\right\}$ | $48 \cdot 4$ | $\left.\begin{array}{r}6 \cdot 6 \\ 53.6\end{array}\right\}$ | $60 \cdot 2$ | $35 \cdot 7$ | $10.2\}$ | $\left.\begin{array}{l}0.7 \\ 8.1\end{array}\right\} \quad 8.8$ | 11 | ) 6.5 |
| 511 | 1930 | 1934 | $v w$ | 61 |  | 61 |  | $33 \cdot 8$ | 11.4 | 8.1 10.9 | 10.9 | $6 \cdot 1$ |
| 402 | - | 2004 | vow | 14.7 |  | 19.9 |  | $4 \cdot 5$ | $2 \cdot 8$ | $2 \cdot 6$ | $3 \cdot 5$ | 7.9 |
| 412 | - | 2069 | <vvw | $13 \cdot 1$ |  | 6.2 |  | $3 \cdot 4$ | $2 \cdot 5$ | $2 \cdot 1$ | $1 \cdot 0$ | 0.5 |
| 521 | 2122 | 2128 | vvw | 24.4 | 26.4 | 20.8 \% | $22 \cdot 3$ | $14 \cdot 2$ | $5 \cdot 0\}$ | $3 \cdot 9$ [ 4.3 | 3.5 | $2 \cdot 3$ |
| 432 |  | 2588 |  | $25 \cdot 3$ |  | $23 \cdot 4$ |  |  |  |  |  | 0.2 |
| 630 \} | 2586 | 2602 | vow | 1.4 | 26.7 | $1.9\}$ |  | $6 \cdot 6$ | $4 \cdot 5$ \} | $0.3\} \quad 3.5$ | $3 \cdot 6$ | 6.4 |
| 611 | 2647 | 2647 | $v v w$ | $\left.\begin{array}{l}<1 \\ 38.2\end{array}\right\}$ | $38 \cdot 2$ | <1 ${ }^{\text {l }}$, 3 \} | $33 \cdot 3$ | $48 \cdot 8$ |  | <1 1 5.1 $\}$ 5.1 | $4 \cdot 9$ | $7 \cdot 2$ |
| ${ }_{313}{ }^{1} 212$ | - | $\stackrel{2653}{ }$ | not obs. | 38.2 7.0 |  | 33.3 7.5 | 3 | 14.9 | 43 | $5 \cdot 1$ 0.9 |  |  |
| 621 | 2843 | 2842 |  | 14.1 |  | $10 \cdot 1$ |  |  | 11.9 | 1.8 1-2 | 12.5 | $14 \cdot 4$ |
| 522 \} | 2843 | 2848 | $w$ | $74 \cdot 3$ \} |  | $79 \cdot 3$ \} |  | 98.7 |  | 9.5 |  |  |
| 541 | - | 2907 | not obs. | 15 |  | $10 \cdot 4$ |  | $14 \cdot 8$ | not obs. | 1.9 | 1.3 | 1.8 |
| ${ }_{532}^{631}$ \} | 3166 | 3161 |  |  |  |  |  |  |  |  |  |  |
| 532 \} | 3160 | 3167 | $m$ | 308 \} | 318 | 322 \} | 331 | 332 | $36 \cdot 1$ | 35.1 $\}^{36 \cdot 2}$ | $37 \cdot 7$ | 37.6 |

The powder photographs were a little spotty, making the visual estimation of lines more difficult than for ReMo55. The small differences in the results for the two alloys led to the two order schemes given in Table 5. For the purposes of ordering the unit cell was assumed to contain 20 Re atoms and 10 Mo atoms. The limited data given in Table 6, for lowangle lines only, do not warrant an unequivocal acceptance of either scheme but calculations on higher-angle lines favour scheme No. 1.

## Discussion

The order schemes obtained by other workers for $\sigma$-phases are presented for comparison with the present results in Table 7. The $\sigma$-phase $\mathrm{Re}_{18} \mathrm{Mo}_{12}$ studied by Ageev \& Shekhtman (1959) has a composition intermediate between those of the two Re-Mo alloys used in this work and the present results suggest the following ordering scheme for this alloy: $A-2 \operatorname{Re} ; B-1 \operatorname{Re} 3 \mathrm{Mo} ; ~ C-4 \operatorname{Re} 4 \mathrm{Mo} ; ~ D-7 \operatorname{Re} 1 \mathrm{Mo}$;

Table 7


[^0]$E-4 R e 4 M o$. This shows agreement with Ageev \& Shekhtman for $A, B$ and $D$ sites only, and furthermore, Ageev \& Shekhtman reject an order scheme with $C$ and $E$ sites filled in the manner suggested. Unfortunately, no comparable details of line intensities are given in their paper.

It is interesting to compare the present order schemes for $\sigma \mathrm{Re}-\mathrm{Mo}$ with those of $\sigma \mathrm{Mn}-\mathrm{Cr}$ and $\sigma \mathrm{Mn}-\mathrm{Mo}$, since manganese and rhenium on the one hand and Mo and Cr on the other belong to the same group in the periodic table. The order schemes for $\sigma \mathrm{Mn}-\mathrm{Cr}$ and $\sigma \mathrm{Mn}-\mathrm{Mo}$ are almost alike with Cr and Mo playing the same role and the excess Mn atoms in $\mathrm{Mn}_{3} \mathrm{Cr}$ tending to fill up $B$ sites rather than $C$ and $E$ sites. The proposed schemes for ReMo55 and ReMo68 are very similar, with Re behaving like Mn and Mo behaving like Cr , except in the filling of $B$ sites. It follows from this comparison that the chemical factor associated with the positions of the alloying elements in the periodic table is an important one in deciding the nature of the order in $\sigma$-phases. In contrast to this, it has been noted by Greenfield \& Beck (1956) that the mean compositions of the $\sigma$-phases formed by rhenium correspond closely to that of $\sigma \mathrm{Mn}-\mathrm{Mo}$ but not $\sigma \mathrm{Mn}-\mathrm{Cr}$.

Assuming Re behaves like $\mathrm{Mn}, \sigma \mathrm{Re}-\mathrm{Cr}$ should be ordered like $\sigma \mathrm{Mn}-\mathrm{Cr}$ and $\sigma \mathrm{Re}-\mathrm{Mo}$, but the results given in Table 7 are conflicting on this point. Ageev \& Shekhtman give the same order scheme for $\sigma \operatorname{ReCr}$ as $\sigma$ ReMo, whilst Waterstrat \& Kasper (1957) state that their $\sigma \mathrm{ReCr}$ is disordered. A more detailed analysis of this phase is required because the Ageev \& Shekhtman scheme is based on six strong lines only and the Waterstrat \& Kasper scheme is derived from a 5 cm powder film. As noted above, the main evidence for order is obtained from a detailed study of weak lines.

For $\sigma$-phases formed between metals of the first long period and also with molybdenum, a correlation between the position of the element to the left ( $X$ ) or to the right $(Y)$ of manganese in the periodic table, the co-ordination number and effective volume of site occupied in the ordered structure has been noted by Kasper \& Waterstrat (1956) as follows:

| Site | Co-ordination <br> No. | Volume of site | Occupancy |
| :---: | :---: | :---: | :---: |
| $A$ | 12 | Small | $Y$ |
| $B$ | 15 | Large | $X$ |
| $C$ | 14 | Medium | Mixed |
| $D$ | 12 | Small | $Y$ |
| $E$ | 14 | Medium | Mixed |

This correlation is maintained approximately by the $\sigma$-phase discussed above formed by rhenium from the third long period and molybdenum from the
second long period, with rhenium behaving like $Y$. In $\sigma \mathrm{ReFe}$ the same correlation is observed with Re behaving like $X$ (Ageev \& Shekhtman, 1960) and this dual role is similar to that of manganese itself, which also behaves like $X$ and $Y$ (Kasper \& Waterstrat, 1956).

Further correlations have been sought between alloying elements in $\sigma$-phases and observed order and, in particular, it has been noted that the volume associated with the crystallographic sites is in accordance with the size of the atomic radii of the elements. This is not applicable to Re and Mo which have very similar radii: $r_{\mathrm{Re}}=1.37$ and $r_{\mathrm{Mo}}=1.38 \AA$, and the main conclusion which can be drawn from the present work is that rhenium acts like manganese in its ordering behaviour in $\sigma$-phases.

The author would like to thank Mrs M. Parselle for assisting with the experimental work and the calculations. He is very much indebted to Dr A. G. Knapton, A. E. I., for making the alloys, and to Mr J. Harrison, Dr J. Adam and Dr J. B. Forsyth of A.E.R.E., for helpful advice and encouragement.

The experimental work was part of a project supported by U.K.A.E.A., Harwell, under the terms of an extra-mural contract.

## References

Ageev, N. V. \& Sherhtman, V. Sh. (1959). Izv. Akad. Nauk S.S.S.R. Ser. Fiz. 23, 5.
Ageev, N. V. \& Sherhtman, V. Sh. (1960). Dokl. Akad. Nauk S.S.S.R. 135, 309.
Bergman, G. \& Shoemaker, D. P. (1954). Acta Cryst. 7, 857.

Brown, P. J. \& Forsyth, J. B. (1961). Acta Cryst. 14, 362.

Dauben, C. H. \& Templeton, D. H. (1955). Acta Cryst. 8, 841 .
Decker, B. F., Waterstrat, R. M. \& Kasper, J. S. (1954). Trans. A.I.M.E. 200, 1406.

Dickens, G. J., Douglas, A. M. B. \& Taylor, W. H. (1956). Acta Cryst. 9, 297.

Greenfield, P. \& Beck, P. A. (1956). Trans. A.I.M.E. 206, 265.
Kasper, J. S., Decker, B. F. \& Belanger, J. R. (1952), Abstract for A.C.A. Meeting, June, 1952.
Kasper, J. S. \& Waterstrat, R. M. (1956). Acta Cryst. 9, 289.
Klug, H. P. \& Alexander, L. E. (1954). X-ray Diffraction Procedures, p. 155. New York: Wiley.
Knapton, A. G. (1958). J. Inst. Met. 87, 28.
Nevitt, M. V. \& Downey, J. W. (1957). Trans. A.I.M.E. 209, 1072.
Waterstrat, R. M. \& Kasper, J. S. (1957). Trans. A.I.M.E. 209, 872.

Wilson, C. G. \& Spooner, F. J. (1963). Acta Cryst. 16, 230.


[^0]:    ${ }^{(4)}$ Kasper \& Waterstrat, 1956.
    ${ }^{(5)}$ Decker et al., 1954.
    $\left(^{6}\right)$ Present results.

